5G Core @ IIT Bombay

Mythili Vutukuru

Department of Computer Science and Engineering IIT Bombay

5G Core: Overview

• Connects the UE / RAN to data networks

AMF (Access and Mobility Management Function)

SMF (Session Management Function)

AUSF (Authentication Server Function)

UDM (Unified Data Management)

UPF (User Plane Function)

5G Core: Functionality

- Registration, authentication, security setup
- Setup data forwarding paths
- Forward user data from base station to external data networks
- Handle mobility across base stations
- Manage user state during active/idle transitions
- Billing, charging, policy

5G Core: Teams

• Development across IITB, CeWiT, IITM

5G Core: Team at IITB

- 5 full-time project engineers:
 - Current: Kapil Gokhale, Rohan Vardekar,
 Greeshma Vasudevan, Adeeba Thahsin, Omkar
 Prabhu
 - Ex-team members: Manasi Kolhe and Tejaswi Tanikella
- Several UG/PG students of CSE, IITB are also actively contributing to the project.

5G core: Versions

- Version 0: Basic user registration procedure
- Version 1: Registration, session setup, data forwarding
 - UE will be able to register, setup a session and transfer data to/from remote server via 5G core
 - End-to-end integration within testbed
- Version 2, Version 3: Mobility, active/idle transitions, and other advanced features.

5G Core: Testbed Setup

- 5G core follows principle of Network Function Virtualization (NFV)
 - Core functionality is being built as virtualized software functions that can run on commodity hardware
 - Software can be made available as source, binaries, VM images, and so on
- A complete testbed is not planned at IITB
 - IITB to make 5G core software available to locations hosting the end-to-end testbed

5G Core: Design Principles (1)

- Network Function Virtualization (NFV)
 - All components are software functions
 - Can be stateless, and scale on demand
 - Virtualized to run in VMs/containers on a cloud

Why NFV?

Hardware NFs

- Long hardware development cycles
- Difficult to scale: need to replace box when load increases
- Hardware functionality is harder to change
- Custom hardware is expensive

Software NFs

- Software development is faster
- Elastic scaling on demand: spawn new VMs as needed
- Greater flexibility in evolving to future needs
- Cheaper commodity hardware

Why NFV now?

- Improved performance of commodity hardware
 - Processors are getting better
 - NICs (network interface cards) are getting smarter
- New techniques for high performance I/O
 - E.g., Intel Data Plane Development Kit (DPDK) can directly transfer packets from NIC to user software, bypassing kernel overheads
- NFV is the default design for 5G core

5G Core: Design Principles (2)

- Control User Plane Separation (CUPS)
 - Control (AMF, SMF, ...) separate from data plane
 - Independent scaling and provisioning
 - Data plane can move closer to user for low latency

5G Core: Design Principles (3)

- Service Based Architecture (SBA)
 - Control plane components talk over HTTP
 - RESTful APIs between components
 - Reuse frameworks for scalable HTTP servers

5G Core: Design Principles (4)

- Network Slicing
 - Separate instances of core components for different applications
 - Isolation, customized implementations

5G Core: Control Plane Stack

- UE and AMF exchange NAS msgs over N1
- RAN and AMF exchange NGAP msgs over N2

5G Core: Data Plane Stack

- UE generates IP datagrams to external data networks
- RAN and UPF use GTP over UDP

Integrating WLAN with the 5G Core Network

Department of Electrical Engineering IIT Bombay

Access Network

Cellular Network with WLAN

3GPP 5G System Architecture

WLAN Access (Non-3GPP Access) for 5G Core

Courtesy: 3GPP

Signaling Relay by N3IWF (Control Plane)

Entities	Interfaces
UE - AMF	NAS Link
UE - N3IWF	IPSec Tunnel
N3IWF - AMF	N2 Link (SCTP,NGAP)

Data Relay by N3IWF (Data Plane)

- IPSec Tunnel between UE and N3IWF and N3 link between N3IWF and UPF.
- Non 3GPP Access Network responsible for just forwarding the packets.

WLAN InterWorking with 5G Core - SDN based Architecture (1/2)

WLAN InterWorking with 5G Core - SDN based Architecture (2/2)

Multi-RAT SDN Controller responsible for managing WiFi APs in vendor agnostic manner.

SDN Middleware comprises of N3IWF, Virtual Base Station.

Courtesy: Adapted from IEEE P1930.1 standard initiative being led by IITB