Overview of the 5G India Test Bed

Radha Krishna Ganti IIT Madras rganti@ee.iitm.ac.in

Feb 2019

5G Test Bed in India, by India

To be at the forefront of 5G developments and deployments

Indigenous 5G Testbed Project

- □ First proposed by Dr. Paulraj
- □ Funded by Department of Telecommunications (DOT)
 - ♦ THANK YOU!
- 240 Crore project
- Three year duration

Build and demonstrate an end-to-end 5G test bed

Major Goals of 5G test bed

- Encourage telecom product startups in India
- New startups
- Multiply R&D capability to develop 5G based solutions for Indian markets
- Demonstrate solutions for India
 - LMLC for Rural network deployments
 - Smart city applications
 - Onse Urban broadband, "wireless fiber" for spurs
- □ Hugely enhance capacity in 5G technology skills
- Increase India's participation in global forums (3GPP, ITU, IEEE) - present test results for Indian use cases

5G Test Bed Team

Collaborating Institutes

IITB

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

IITH

IITM

IITD

IISc

SAMEER

IITK

CEWIT	Baseband Algorithms, Core Network, Hardware Platforms
IIT Bombay	Core Network
IIT Delhi	Baseband Algorithms, LiFi, Security
IIT Hyderabad	NB-IoT Asic, Algorithms, UE (CPE form factor)
IIT Madras	Hardware Platforms, Core Network, Algorithms
IIT Kanpur	Relay, Hardware Platforms,
IISc Bangalore	Baseband Algorithms, IoT, LiFi
SAMEER	Antennas, RF platforms

40 Investigators (faculty members/Senior researchers) from 8 institutes
 Currently 200 researchers working on the testbed
 Engaging with Indian telecom startups for various sub-systems

Test Bed Locations

Subsystems and Use cases being Developed

Major Subsystems to be developed

Being developed world over for the first time

Integrated mmWave Radio Front end

- Development of hybrid analog/digital architectures
- ♦ 256 Antenna (with 4 streams)

Massive MIMO subsystem

- ♦ 64 Antenna systems (Sub 6 GHz)
- ♦ Radio, Front end, Baseband
- Full Duplex Radios
- □ 5G Base band
 - ♦ 5G NR (3GPP 38 Series) compliant
 - Supporting lower bands (< 6 GHz) and higher bands (> 6 GHz).
- Edge Computing Subsystem
- CloudRAN
 - Centralized baseband implementation with cooperative schemes

Major Subsystems to be developed [Contd.]

G 5G Core Network

- ♦ SDN based
- ♦ Multi-RAT using WiFi etc
- Management layer for test bed management
- □ IoT (Internet of Things)
 - An end-to-end IoT network will be developed using a mix of commercial and prototype components
- Security
 - Security for IoT will be a special focus
 - Security for SDN and NFV architectures will be a new challenge to address
- 🗆 Li-Fi
 - Giga bits range high-speed Li-Fi system
- Devices
 - Mix of devices developed and commercially available

Test Bed Setup - Final

RRH Design

Functions of a Basestation

Functions of a Basestation

Data High High High Low Low Low RRC PDCP RF MAC MAC PHY RLC RLC PHY **Option 8** Option 3 Option 4 **Option 5** Option 6 Option 7 **Option 1** Option 2 High High High Low Low Low RRC PDCP RF PHY MAC PHY RLC RLC MAC Data LAYER 3 FUNCTIONS LAYER 2 FUNCTIONS LAYER 1 FUNCTIONS

Computations Increase

Data Rate Increases

Functional Split in the Basestation

	Split D		Split lo		Split IIo		Split E
	User Data [Gbps]	Control [Gbps]	User Data [Gbps]	Control [Gbps]	User Data [Gbps]	Control [Gbps]	User Data [Gbps]
eREC→ eRE	3 (assumption)	<< 1	< 4	< 10	~ 20	< 10	236
			Split	t lu			
eRE → eREC	1.5 (assumption)	<< 1	~ 20	< 10	1		236

Chosen Split =
7.1

RRH Design Requirements

- □ RF front-end PA, LNA, Antennas, etc.
 - ♦ RF operation at 3.5GHz 100 MHz bandwidth
 - ♦ And at 28 GHz 400 MHz bandwidth.
- □ ADC, DAC interfacing.
- □ eCPRI interface with BBU.
- □ Low PHY processing.
- □ Clock Synchronization.
- □ Support for Massive MIMO and mmWave.
 - ♦ 64 antennas for sub-6 GHz, 256 antennas for mmWave.

RRH Block Diagram

RRH Boards Side-View

Base Band Unit

BBU : Requirements & Architecture

H/w features:

- Scalable
- Processing power
- High bandwidth
 interfaces
- Low latency
- Power efficient

BBU: Architecture

Baseband Unit

Baseband processing card: PCB

Baseband processing card: Enclosure

Dual width, Full length, PCIe compliant

Overall Data Flow

Massive MIMO

Version 0

- **Output power : 20dBm**
- **Bandwidth : 100MHz**
- **Frequency : 3500MHz**
- Receiver Sensitivity : -94dBm

Start Date: July 2018

Current status: Layout completed

Completion Date: Jan 2019

Specifications

Operating Mode	TDD
TDD switching speed	10 us
Rx Noise figure of Radio Transceiver	13 dB
Tx output power from Radio Transceiver	-25 dBm
Tx gain required to get 20 dBm output	45 dB
Rx gain Required	-
Reciprocity and Linearity Maintenance	TDD Calibration Path and ORx Path to do DPD
To Attenuate Out of band Interferers and Reduce Out of band radiation	Saw Filters

PCB – 3D view – Bottom side

Size: 350mm X 250mm X 2mm Number of layers: 6

MMWave

Version 0

- **Output power : +11 dBm**
- **Bandwidth : 100MHz**
- **Frequency : 28GHz**

Start Date: June 2018

Current status: Layout completed

Completion Date: Jan 2019

Block Diagram

PCB – 3D view

INTEGRATED TEST BED SUMMARY 1/2

Version	Summary Features Available	
Version 0 May 1, 2019	 Individual RF, RRH, BB subsystems ready for demo to users. Platform/Tool providers get technical feedback. 	
Version 1 January 1, 2020	 Integrated end to end basic functionality ready for demo for users. Users can understand the 5G aspects by seeing demo related to massive MIMO, mmWave etc. Experiential learning tool for 5G technology. Users can plug in their own modules and check for those features which are within the scope of Ver1. Partners get an initial version of working hardware and software for internal use. 	

INTEGRATED TEST BED SUMMARY 2/2

Version	Summary Features Available
Version 2	• Integrated end to end functionality ready for demo for users.
September	• Users can run end to end applications.
1, 2020	• Users can plug in their own modules in RAN or Core and run them in the end to end functionality within the functionality of Ver2.
	• Researcher can put in their algorithms and check performance.
	Software and Hardware ready for initial licensing.
Version 3	• Integrated end to end functionality ready for use case demos like LMLC, Dense Urban, IOT scenarios.
April 1,	• Users can run end to end applications including IOT.
2021	• Users can plug in their own modules in RAN or Core and run them in the end to end functionality.
	• Users can use slicing techniques to understand its effectiveness.
	• Users can bring in a network element and integrate with the test bed.
	• Users can license parts of the test bed Software and Hardware.

An exciting opportunity for academia, industry collaboration

Let us do something different!

Thank You

August 2018